Hardware Reverse Engineering 101

By John Norman
LayerOne 2013
Basic Principles

• Reverse engineering is the process of figuring how something works, “the rules of the game”

• We must understand the rules of the game before we can modify them.
Basic Principles

• This information used to be published (schematics, repair guides, etc.)

• These are now considered “Intellectual Property” and usually not disclosed.
What can we do with this?

- Repair otherwise non-repairable items
- Modify our stuff
- Cheaply source parts
- Learn better ways to design our own projects.
Safety

• High voltage is our greatest danger
 – >50V on dry skin is dangerous
 – Wet or broken skin much more dangerous
 – Possibility of shock, electrocution, arc burns
Safety

- Things to watch out for
 - Warning labels
 - Thick insulation
 - Shielding
Safety

• Many devices contain high voltages
 – Mains-supplied equipment
 – Microwave ovens (1500V+) and lethal current(!)
 – CRT and tube devices
Safety

- Power off equipment and discharge capacitors
- Wear rubber-soled shoes
- Keep one hand in pocket at all times
- Use insulated tools
Tools of the Trade

- Disassembly/Assembly
 - Standard screwdrivers
 - Philips #1-#3
 - Flat-blade
 - Small screwdrivers
 - Security driver set (torx, security hex, etc)

Tip: Buy high-quality tools! (Klein, Wiha, etc.)
Tools of the Trade

- Disassembly, modding,
 - Guitar picks, saw blade (case spreading)
 - Sockets/drivers/wrenches
 - Pliers, tweezers
 - Wire strippers (gauge-specific)

Tip: Use a heat gun to soften glue
Tools of the Trade

• Test and Measurement
 – Multimeter
 • Measure AC/DC voltage, continuity, resistance
 • Cost: $10-$200

 – ESR Meter
 • Test capacitors in-circuit (#1 cause of dead gear!)
 • Cost: $50-$500
Tools of the Trade

- Test and Measurement
 - Logic analyzer
 - Perform detailed analysis and decoding of signals
 - Does not show wave forms
 - Cost: $50-$10K+
Tools of the Trade

- Test and Measurement
 - Oscilloscope
 - See fast signal changes, wave forms
 - Measure voltages, amplitudes, etc.
 - Cost: $50-$10K+
Tools of the Trade

• Soldering
 – High-quality Soldering Iron
 • Must have temperature control, variety of tips
 • Cost: $50-1000
 – Hot air rework station
 • Great for removing components
 • Cost: $50-1000

Tip: Practice on junk electronics first!
Tools of the Trade

• Device Programmers
 – Microchip Pickit
 • Program and read Microchip PIC chips
 • Cost: $35
 – Atmel AVR-ISP Mk II
 • Program and read Atmel AVR chips
 • Cost: $35
 – JTAG Debugger
 • Program, read, debug various 32-bit ARM chips
 • Cost: $30-$500+
 • Often require device-specific software/config files
 – EPROM burner
 • Program, read, modify various ROMs
 • Cost: $30-150
Tools of the Trade

- **Magnification**
 - Stereo microscope (awesome!)
 - Cost: $100-1000+
 - 5-20X jeweler’s loupe
 - Cost: $10-20
Taking things apart

• Remove power
• Locate fasteners and remove
 – Screws
 – Hidden screws (check under stickers, rubber feet)
 – Glue (soften with heat or crack/saw plastic welds loose)
 – Plastic tabs (use guitar pick or case spreader)
Taking things apart

- Keep track of fasteners
 - Egg carton or pill box
 - Take photos
 - Tape strip
Taking things apart

• Remove connectors as needed
 – Push or pull to disengage locks
 – Gently pry up tape or glue

Tip: Small mechanicals are very fragile!
Identify boards and modules

• All devices have some sort of power supply
 – Look for large caps, inductors, thick wires and traces
 – Follow power connectors from case
 – Most common source of malfunctions
Identify boards and modules

- Logic boards will have low-current traces and chips with loads of pins
- CPUs often have a clock or oscillator
- Also look for “glue logic” and support chips
Identify boards and modules

- What connects to them gives us a clue to their function
 - Antennas
 - Serial ports, USB, etc.

- Look for markings and other self-documentation
Identify components

• The components on a PCB also give us clues
• Large passive components usually indicate power
 - PTH capacitors
 - Power resistors
 - Inductors
• Small-sized passives are for signals
 • Diodes
 • Chip capacitors
 • SMT resistors
Identify components

- RF modules often have metal shielding around them
 - Not an SD card holder!

- Other obvious components
 - Relays
 - Surge protection devices and fuses
 - Input protection circuits
Identify components

• Labeled components
 – R1, R2 for resistors, C1, C2 for caps, U1, U2 for chips, etc.
Get the Data Sheets

• Confirm identity of components by looking up part numbers
 – Alldatasheet.com
 – Digikey.com
 – Mouser.com
 – Manufacturer website (manufacturer logo or code in part number)
Get the Data Sheets

These data sheets are your “go to” source for hacking!
2 Pin configuration

Figure 2. Pin connections

<table>
<thead>
<tr>
<th>Pin n°</th>
<th>Symbol</th>
<th>Name and function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SWC</td>
<td>Switch collector</td>
</tr>
<tr>
<td>2</td>
<td>SWE</td>
<td>Switch emitter</td>
</tr>
<tr>
<td>3</td>
<td>TC</td>
<td>Timing capacitor</td>
</tr>
<tr>
<td>4</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>5</td>
<td>CII</td>
<td>Comparator inverting input</td>
</tr>
<tr>
<td>6</td>
<td>VCC</td>
<td>Voltage supply</td>
</tr>
<tr>
<td>7</td>
<td>IPK</td>
<td>IPK sense</td>
</tr>
<tr>
<td>8</td>
<td>DRC</td>
<td>Voltage driver collector</td>
</tr>
</tbody>
</table>
Get the Data Sheets

• A chip or other component often comes with a reference design
 – Your device will usually contain something very similar to the reference design. Look for it!
 – May also have programming, other hacking info
6 Typical application circuit

Figure 13. Step-up converter

![Diagram of a step-up converter](image-url)
Make an educated guess as to function

• Designers are lazy
 – After a while, you’ll see the same circuits over and over
 • Power supply circuits
 • Input protection
 • Outputs/relay drivers/lighting control
 • Op-amps and other front-end signals
Figure out your hacking strategy

- What am I trying to do?
 - Fix it?
 - Add a feature?
 - Cannibalize it for parts?
Figure out your hacking strategy

• Questions to ask
 – Do the parts come up when I do a search?
 – Any OTP devices?
 – High-speed devices?
 – Difficult access (BGA, multilayer PCBs)
Figure out your hacking strategy

• Some strategies
 – Dump the program ROM and change it
 • Requires locating the proper chip and attaching a device
 • Security fuses may prevent extraction
 • May require extensive knowledge of assembly language and embedded debug tools

Example: “Mod chips” for OBD-I cars
Figure out your hacking strategy

• Write a new program and upload it
 • May be best option if a tool chain is available.
 • Also helps if device is simple and uses well-documented peripherals

Example: Open firmware for Baofeng UV3r radio
Figure out your hacking strategy

- Build an add-on module
 - Add a daughter board to take over or supplement the device’s own logic
 - Replace a module with your own

Example: Fake GPS Module, UV3r beacon
Figure out your hacking strategy

• More strategies
 – Break out unused pins
 – Solder on missing parts

Example: Xbox USB add-on
Figure out your hacking strategy

• More strategies
 - Figure out it’s protocol and plug into it
 • Find the pin out (starting with GND)
 • Use scope, logic analyzer, data sheets
 • SPI
 • Serial
 • Clock/Data

Example: Alarm system protocols
Old vs. new Stuff

- Very low-cost hardware often sucks for hacking
- In general, older devices are easier to hack
 - More stuff on PCB, less inside custom chips
 - Older, well-documented parts
Going for it

• Simple analog devices respond to parts swaps
 • Switching PSUs
 – Can be reprogrammed with resistors
• Beeping/flashing toys
• Musical instruments
 – Look for R-C oscillators, try swapping values
Going for it

• Even software mods usually start in hardware
 – Solder probe wires to traces
 – Replace a ROM chip with a socket
 – Make a special interface cable
Going for it

• You will break your device at some point
• Consider buying two, or a parts unit on eBay
• Check forums and mailing lists
Legal issues

- In the U.S., DMCA is your main worry.
- Section 1201(f) allows for exemption for developers to circumvent protection is order to achieve "the elements necessary to achieve interoperability of an independently created computer program with other programs."
Legal issues

Things to consider:

- Be careful what you document and share
- Can be construed as “circumvention” under DMCA
- Some info sharing can be construed as “trafficking.”
- In general, the more paranoid and tied to expensive hardware a company is, the more likely they are to attack you.
Legal issues

• Bottom line:

You can be right and still get screwed!
Further Reading

• Safety
 • Sam’s LASER FAQ
 – http://www.repairfaq.org/sam/safety.htm

• General Electronics
 • Forrest Mimms III – Getting Started in Electronics
 – http://www.forrestmims.org/publications.html
 • Analog Seekrets – Leslie Green
 – http://www.logbook.freeserve.co.uk/seekrets/

• Component ID
 • Wikibooks Electronic Component ID guide
Further Reading

- **Video Blogs and Forums**
 - EEVBLOG – Teardowns, tutorials, etc.
 - http://www.eevblog.com

- **Reverse Engineering Techniques**
 - Bunnie Huang - Hacking the Xbox (Now available free!)
 - http://nostarch.com/xboxfree

- **Legal**
 - EFF Reverse Engineering FAQ
 - https://www.eff.org/issues/coders/reverse-engineering-faq
 - Chilling Effects Reverse Engineering Guide
 - http://chillingeffects.org/reverse/faq.cgi
Thank you!

- Questions?
- My contact
 - http://www.accxproducts.com/wiki
 - E-mail: jnorman@accxproducts.com